- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Zhang, Fangyue (2)
-
Amaral, Cibele (1)
-
Babst, Flurin (1)
-
Babst‐Kostecka, Alicja (1)
-
Biederman, Joel (1)
-
Chen, Han Y. H. (1)
-
Devine, Charles (1)
-
Feldman, Andrew F (1)
-
Fu, Zheng (1)
-
Green, Julia K (1)
-
Guo, Jessica (1)
-
Hanan, Niall P (1)
-
Hector, ed., Andrew (1)
-
Jiang, Lin (1)
-
Kokaly, Raymond (1)
-
Litvak, Marcy (1)
-
Ma, Fangfang (1)
-
MacBean, Natasha (1)
-
Moore, David (1)
-
Niu, Shuli (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Dryland ecosystems cover 40% of our planet's land surface, support billions of people, and are responding rapidly to climate and land use change. These expansive systems also dominate core aspects of Earth's climate, storing and exchanging vast amounts of water, carbon, and energy with the atmosphere. Despite their indispensable ecosystem services and high vulnerability to change, drylands are one of the least understood ecosystem types, partly due to challenges studying their heterogeneous landscapes and misconceptions that drylands are unproductive “wastelands.” Consequently, inadequate understanding of dryland processes has resulted in poor model representation and forecasting capacity, hindering decision making for these at‐risk ecosystems. NASA satellite resources are increasingly available at the higher resolutions needed to enhance understanding of drylands' heterogeneous spatiotemporal dynamics. NASA's Terrestrial Ecology Program solicited proposals for scoping a multi‐year field campaign, of which Adaptation and Response in Drylands (ARID) was one of two scoping studies selected. A primary goal of the scoping study is to gather input from the scientific and data end‐user communities on dryland research gaps and data user needs. Here, we provide an overview of the ARID team's community engagement and how it has guided development of our framework. This includes an ARID kickoff meeting with over 300 participants held in October 2023 at the University of Arizona to gather input from data end‐users and scientists. We also summarize insights gained from hundreds of follow‐up activities, including from a tribal‐engagement focused workshop in New Mexico, conference town halls, intensive roundtables, and international engagements.more » « less
-
Quan, Quan; Zhang, Fangyue; Jiang, Lin; Chen, Han Y. H.; Wang, Jinsong; Ma, Fangfang; Song, Bing; Niu, Shuli; Hector, ed., Andrew (, Journal of Ecology)Abstract Ecosystem stability is essential to its sustainable functions and services to humanity. Although climate warming is projected to vary from 1 to 5°C by the end of 21st century, how the temporal stability of plant community biomass production responds to different warming scenarios remains unclear.To fill this knowledge gap, we conducted a 6‐year field experiment with three levels of warming treatments (control, +1.5°C, +2.5°C) by using infrared radiators, in an alpine meadow on the Qinghai–Tibet Plateau.We found that low‐level warming (+1.5°C), compared to the control, did not significantly change the temporal stability of plant community biomass production and its underlying causes, including species diversity, compensatory dynamics, mean–variance scaling, biomass temporal stability of plant population (the average of temporal stability of species biomass production of all species in the community) or dominant species. However, high‐level warming (+2.5°C) significantly reduced them. Species diversity was not a significant predictor of temporal stability of plant community biomass production in this species‐rich ecosystem, regardless of the magnitude of warming, while co‐existing species compensatory dynamics and the biomass temporal stability of dominant species determined the response of temporal stability of plant community biomass production to warming.Synthesis. Our results suggest that the responses of plant community biomass temporal stability and its underlying mechanisms to climate warming depend on warming magnitudes. The findings highlight the various responses of ecosystem functions and services to different warming scenarios and imply that ecosystem will fail to maintain and provide stable biomass‐related services for humanity under high‐level climate warming.more » « less
An official website of the United States government
